It's exiting the 5th best social network and the 10th (or worse) best AI company and selling them to a decent company.
It probably increases Elon's share of the combined entity.
It delivers on a promise to investors that he will make money for them, even as the underlying businesses are lousy.
I'm confused about the level of conversation here. Can we actually run the math on heat dissipation and feasibility?
A Starlink satellite uses about 5K Watts of solar power. It needs to dissipate around that amount (+ the sun power on it) just to operate. There are around 10K starlink satellites already in orbit, which means that the Starlink constellation is already effectively equivalent to a 50 Mega-watt (in a rough, back of the envelope feasibility way).
Isn't 50MW already by itself equivalent to the energy consumption of a typical hyperscaler cloud?
Why is starlink possible and other computations are not? Starlink is also already financially viable. Wouldn't it also become significantly cheaper as we improve our orbital launch vehicles?
Simply put no, 50MW is not the typical hyperscaler cloud size. It's not even the typical single datacenter size.
A single AI rack consumes 60kW, and there is apparently a single DC that alone consumes 650MW.
When Microsoft puts in a DC, the machines are done in units of a "stamp", ie a couple racks together. These aren't scaled by dollar or sqft, but by the MW.
And on top of that... That's a bunch of satellites not even trying to crunch data at top speed. No where near the right order of magnitude.
It's like this. Everything about operating a datacenter in space is more difficult than it is to operate one on earth.
1. The capital costs are higher, you have to expend tons of energy to put it into orbit
2. The maintenance costs are higher because the lifetime of satellites is pretty low
3. Refurbishment is next to impossible
4. Networking is harder, either you are ok with a relatively small datacenter or you have to deal with radio or laser links between satellites
For starlink this isn't as important. Starlink provides something that can't really be provided any other way, but even so just the US uses 176 terawatt-hours of power for data centers so starlink is 1/400th of that assuming your estimate is accurate (and I'm not sure it is, does it account for the night cycle?)
> The maintenance costs are higher because the lifetime of satellites is pretty low
Presumably they're planning on doing in-orbit propellant transfer to reboost the satellites so that they don't have to let their GPUs crash into the ocean...
> Presumably they're planning on doing in-orbit propellant transfer to reboost the satellites so that they don't have to let their GPUs crash into the ocean
Hell, you're going to lose some fraction of chips to entropy every year. What if you could process those into reaction mass?
Or maybe they want to just use them hard and deorbit them after three yesrs?
> Everything about operating a datacenter in space is more difficult than it is to operate one on earth
Minus one big one: permitting. Every datacentre I know going up right now is spending 90% of their bullshit budget on battlig state and local governments.
But since building a datacenter almost anywhere on the planet is more convenient than outer space, surely you can find some suitable location/government. Or put it on a boat, which is still 100 times more sensible than outer space.
This is a huge one. What Musk is looking for is freedom from land acquisition. Everything else is an engineering and physics problem that he will somehow solve. The land acquisition problem is out of his hands and he doesn't want to deal with politicians. He learned from building out the Memphis DC.
He "learned" by illegally poisoning black people
> an engineering and physics problem that he will somehow solve
no he won't
So freedom from law and regulation?
Well let's face it. Not all law and regulation is created equal. Look at Europe.
So why does he not build here in Europe then? Getting a permit for building a data center in Sweden is just normal industrial zoning that anyone can get for cheap, there is plenty of it. Only challenge is getting enough electricity.
I mean, you don't have zoning in space, but you have things like international agreements to avoid, you know, catastrophic human development situations like kessler syndrome.
All satellites launched into orbit these days are required to have de-orbiting capabilities to "clean up" after EOL.
I dunno, two years ago I would have said municipal zoning probably ain't as hard to ignore as international treaties, but who the hell knows these days.
> is spending 90% of their bullshit budget on battlig state and local governments
Source? I can't immediately find anything like that.
Parent just means "a lot" and is using 90% to convey their opinion. The actual numbers are closer to 0.083%[1][2][3][4] and parent thinks they should be 0.01-0.1% of the total build cost.
1. Assuming 500,000 USD in permitting costs. See 2.
2. Permits and approvals: Building permits, environmental assessments, and utility connection fees add extra expenses. In some jurisdictions, the approval process alone costs hundreds of thousands of dollars. https://www.truelook.com/blog/data-center-construction-costs
3. Assuming a 60MW facility at $10M/MW. See 4.
4. As a general rule, it costs between $600 to $1,100 per gross square foot or $7 million to $12 million per megawatt of commissioned IT load to build a data center. Therefore, if a 700,000-square foot, 60-megawatt data center were to be built in Northern Virginia, the world’s largest data center market, it would cost between $420 million and $770 million to construct the facility, including its powered shell and equipping the building with the appropriate electrical systems and HVAC components. https://dgtlinfra.com/how-much-does-it-cost-to-build-a-data-...
Yeah, I was trying to be nicer than "you're making it up" just in case someone has the actual numbers.
that may have been the case before but it is not anymore. I live in Northern VA, the capital of the data centers and it is easier to build one permit-wise than a tree house. also see provisions in OBBB
What counts towards a bullshit budget? Permitting is a drop in the bucket compared to construction costs.
>1. The capital costs are higher, you have to expend tons of energy to put it into orbit
putting 1KW of solar on land - $2K, putting it into orbit on Starship (current ground-based heavy solar panels, 40kg for 4m2 of 1KW in space) - anywhere between $400 and $4K. Add to that that the costs on Earth will only be growing, while costs in space will be falling.
Ultimately Starship's costs will come down to the bare cost of fuel + oxidizer, 20kg per 1kg in LEO, i.e. less than $10. And if they manage streamlined operations and high reuse. Yet even with $100/kg, it is still better in space than on the ground.
And for cooling that people so complain about without running it in calculator - https://news.ycombinator.com/item?id=46878961
>2. The maintenance costs are higher because the lifetime of satellites is pretty low
it will live those 3-5 years of the GPU lifecycle.
> will come down to the bare cost of fuel + oxidizer
And maintenance and replacing parts and managing flights and ... You're trying to yadda-yadda so much opex here!
It is SpaceX/Elon who bet billions on that yadda-yadda, not me. I wrote "If" for $10/kg. I'm sure though that they would easily yadda-yadda under sub-$100/kg - which is $15M per flight. And even with those $100/kg the datacenters in space still make sense as comparable to ground based and providing the demand for the huge Starship launch capacity.
50MW is on the small side for an AI cluster - probably less than 50k gpus.
if the current satellite model dissipates 5kW, you can't just add a GPU (+1kW). maybe removing most of the downlink stuff lets you put in 2 GPUs? so if you had 10k of these, you'd have a pretty high-latency cluster of 20k GPUs.
I'm not saying I'd turn down free access to it, but it's also very cracked. you know, sort of Howard Hughesy.
> Isn't 50MW already by itself equivalent to the energy consumption of a typical hyperscaler cloud?
xAI’s first data center buildout was in the 300MW range and their second is in the Gigawatt range. There are planned buildouts from other companies even bigger than that.
So data center buildouts in the AI era need 1-2 orders of magnitude more power and cooling than your 50MW estimate.
Even a single NVL72 rack, just one rack, needs 120kW.
Amazon’s new campus in Indiana is expected to use 2.2GW when complete. 50Mw is nothing, and that’s ignoring the fact that most of that power wouldn't actually be used for compute.
> 10th (or worse) best AI company
You might only care about coding models, but text is dominating the market share right now and Grok is the #2 model for that in arena rankings.
Grok is losing pretty spectacularly on the user / subscriber side of things.
They have no path to paying for their existence unless they drastically increase usage. There aren't going to be very many big winners in this segment and xAI's expenses are really really big.
I really wonder what will happen when the AI companies can no longer set fire to piles of investor money, and have to transition to profitability or at least revenue neutrality - as that would entail dramatically increasing prices.
Is the plan to have everyone so hopelessly dependent on their product that they grit their teeth and keep on paying?
Plus government backstop. The federal government (especially the current one) is not going to let SpaceX fail.
Maybe not, but they might force it to sell at fire sale prices to another aerospace company that doesn't have the baggage.