>1. The capital costs are higher, you have to expend tons of energy to put it into orbit
putting 1KW of solar on land - $2K, putting it into orbit on Starship (current ground-based heavy solar panels, 40kg for 4m2 of 1KW in space) - anywhere between $400 and $4K. Add to that that the costs on Earth will only be growing, while costs in space will be falling.
Ultimately Starship's costs will come down to the bare cost of fuel + oxidizer, 20kg per 1kg in LEO, i.e. less than $10. And if they manage streamlined operations and high reuse. Yet even with $100/kg, it is still better in space than on the ground.
And for cooling that people so complain about without running it in calculator - https://news.ycombinator.com/item?id=46878961
>2. The maintenance costs are higher because the lifetime of satellites is pretty low
it will live those 3-5 years of the GPU lifecycle.
Current cost to LEO is $1500 per kg
That would make your solar panel (40kg) around $60K to put into space.
Even being generous and assuming you could get it to $100 per kg that's still $4000
There's a lot of land in the middle of nowhere that is going to be cheaper than sending shit to space.
> will come down to the bare cost of fuel + oxidizer
And maintenance and replacing parts and managing flights and ... You're trying to yadda-yadda so much opex here!
It is SpaceX/Elon who bet billions on that yadda-yadda, not me. I wrote "If" for $10/kg. I'm sure though that they would easily yadda-yadda under sub-$100/kg - which is $15M per flight. And even with those $100/kg the datacenters in space still make sense as comparable to ground based and providing the demand for the huge Starship launch capacity.
A datacenter costs ~$1000/ft^2. How much equipment per square foot is there? say 100kg (1 ton per rack plus hallway). Which is $1000 to put into orbit on Starship at $100/kg. At sub-$50/kg, you can put into orbit all the equipment plus solar panels and it would still be cheaper than on the ground.
100 x 100 is 10,000.