We need quantum entanglement based communication. Maybe without full collapse, using weak measurements, like Alice continuously broadcasts a "retrocausal carrier wave" by sequencing planned future post-selection measurements on her entangled qubits, which backward-propagates through time-symmetric quantum evolution to create detectable perturbations in the present states, biasing Bob's qubits away from pure randomness to encode message patterns.

Both parties perform weak measurements on their qubits to extract these subtle signals without collapsing the entanglement, preserving high coherence across the stream. A quantum Maxwell's demon (e.g. many experiments but can be done: https://pubmed.ncbi.nlm.nih.gov/30185956/) then adaptively selects the strongest perturbations from the wave, filters out noise, and feeds them into error correction to reliably decode and amplify the full message.

> which backward-propagates through time-symmetric quantum evolution to create detectable perturbations in the present states,

That's not how quantum physics works. You might be misunderstanding delayed-choice. If you do think it works this way, I encourage you to show a mathematical model: that'll make it easier to point out the flaw in your reasoning.

You cannot exchange information with quantum entanglement. It’s impossible.