An LLM's take on this thread (GPT 5.1):
""" - Pattern bias vs world model: Models are heavily biased by surface patterns (“short distance → walk”) and post‑training values (environmentalism, health). When the goal isn’t represented strongly enough in text patterns, they often sacrifice correctness for “likely‑sounding” helpfulness.
- Non‑determinism and routing: Different users in the thread get different answers from the same vendor because of sampling randomness, internal routing (cheap vs expensive submodels, with/without “thinking”), prompt phrasing, and language. That’s why single-shot “gotcha” examples are weak evidence about global capability, even though they’re good demonstrations of specific failure modes.
- Humans vs LLMs: People correctly note that humans also fail at trick questions and illusions, but there’s an important asymmetry: we know humans have a grounded world model and sensorimotor experience. With LLMs, we only have behavior. Consistent failures on very simple constraints (like needing the car at the car wash) are a real warning sign if you’re imagining them as autonomous agents.
- Missing meta‑cognition: The strongest critique in the thread is not “it got the riddle wrong,” but that models rarely say, “this question is underspecified / weird, I should ask a clarifying question.” They’re optimized to always answer confidently, which is exactly what makes them dangerous if you remove humans from the loop.
- Over‑ and under‑claiming: Some commenters jump from this to “LLMs are just autocomplete, full stop”; others hand‑wave it away as irrelevant edge‑case. Both are overstated. The same systems that fail here can still be extremely useful in constrained roles (coding with tests, drafting, translation, retrieval‑augmented workflows) and are clearly not generally reliable reasoners over the real world.
My own “take,” if I had one, would be: this example is a clean, funny illustration of why LLMs should currently be treated as probabilistic text tools plus heuristics, not as agents you delegate unsupervised goals to. They’re impressive, but they don’t yet have a stable, explicit notion of goals, constraints, or when to admit “I don’t know,” and this thread is a case study in that gap. """