the title is a bit clickbait - mathematicians don't disagree, all the "conceptions" the article proposes agree with each other. It also seems to conflate the algebraic closure of Q (which would contain the sqrt of -1) and all of the complex numbers by insisting that the former has "size continuum". Once you have "size continuum" then you need some completion to the reals.
anyhow. I'm a bit of an odd one in that I have no problems with imaginary numbers but the reals always seemed a bit unreal to me. that's the real controversy, actually. you can start looking up definable numbers and constructivist mathematics, but that gets to be more philosophy than maths imho.