It also needs a bit of biology. Our eyes don't have a flat response over frequency, they're more sensitive to blue than violet. Violet gets scattered even more than blue, and the violet light does shift our perception of the color. But it does so less than it would if we had photoreceptors more sensitive to violet, so the resulting perceptual color depends not just on the intensity of the light at different frequencies but also on our particular biology. People with tritanopia (blue-yellow color blindness) don't have blue-sensitive cones (S cones) and thus to them there is no perceived blue. Not to mention the linguistic history of the word "blue" and why English uses "blue" instead of "青" or some other word, the questions around qualia & what it means to perceive color, etc.

There are differences in receptor behavior across species, but they are understandably clustered around the parts of the spectrum in which sol is most luminous. An earth-like planet orbiting a different star would likely have evolved photoreceptor arrangements which match that star instead. So after scratching the biology itch we'll probably need to talk about fusion byproducts in sol-like stars.

The real question is, is the sky blue for everyone? Some creatures can see ultraviolet. Some lack color at all…

Some animals have more cone types than humans, especially various birds, so would probably see a violet sky.

We don't have this because common ancestor for all mammals lost all cones but one, perhaps due to being nocturnal, and a second was re-evolved as mammals became more dominant (after dinosaur extension). A third cone was evolved in primates due to a gene duplication that gave us our green cone

https://www.sciencedirect.com/science/article/pii/S004269890...

I puttered on a color interactive where, to emphasize this distinction between world-spectra vs brain-color, you could swap in color deficiencies, a non-primate mammal ( dichromats), and a monochromat.