This is cool but it seems like it would be liable to drift. I.e. it "knows" the correct time but doesn't have any way to figure out that it's been driving the movement fast or slow by some number of milliseconds. Eventually, that will pile up to the point that it's not any better than running the thing off of batteries.
As the author points out, the cheap quartz mechanism has no way of reporting the position of the hands (other than the hands themselves) and that you have to set the PULSETIME constant by the right number of milliseconds. If you're off by even a millisecond, that's going to accumulate quick enough that it would make a difference over even a single day, wouldn't it?
EDIT: as some have pointed out, the Lavet stepper theoretically accounts for this in that it steps exactly one tick after so many oscillations. That number of oscillations does not change so that's all you need to get right.
However, that basically just kicks the can down the road a bit in that if each step is not exactly 1/60th of a circle or bits wear down or get sticky or you have analog noise in there you will presumably still have a source of biased drift that you won't be able to detect. But maybe those affects are small enough that they don't matter for a wall clock.
The escapement is "synchronous" in that the motion is controlled by the number of pulses applied to the motor over time rather than the duration/width of each pulse. The pulsetime constant is only to accommodate mechanical/analog differences with the driving circuitry, from what I understand. https://en.wikipedia.org/wiki/Lavet-type_stepping_motor
That's fascinating; the Lavet-type stepping motor acts as an escapement all on it's own by being a very simple stepper motor, so you don't end up needing a miniature version of a classic mechanical escapement, which is what I'd always imagined in my head when thinking about how cheap quartz wall clocks worked.
https://en.wikipedia.org/wiki/Escapement
The pulsetime is just to advance the clockwork one step, and is kept fixed, the advancement driven by the mechanism is discrete. As long as you keep track of the count, you wont accumulate drift. The adjustment is to get that stepping working, if it doesnt miss a step, youre good.
In a perfect world, yes. But mechanisms aren’t perfect and it’s entirely possible if not likely that steps will be missed as friction increases over time and things wear.
I’m not saying these things matter much in this context.
The clock will still be far more accurate than purely mechanical version. And, re-synchronizing it is as trivial as turning the knob, just as you would for the all mechanical mechanism.
its a fairly reliably stepper motor system. You're right it will degrade over time, you'd be surprised how many steps it can do before it degrades.