The author has a bizarre idea of what a computer science degree is about. Why would it teach cloud computing or dev ops? The idea is you learn those on your own.

If that's "the idea", then clearly we need a more holistic, useful degree to replace CS as "the" software degree.

Cloud computing is not some new fundamental area of computer science. It’s just virtual CPUs with networks and storage. My CS degree from 1987 is still working just fine in the cloud, because we learned about CPUs, virtualization, networks, and storage. They’re all a lot bigger and faster, with different APIs, but so what?

Devops isn’t even a thing, it’s just a philosophy for doing ops. Ops is mostly state management, observability, and designing resilient systems, and we learned about those too in 1987. Admittedly there has been a lot of progress in distributed systems theory since then, but a CS degree is still where you’ll find it.

School is typically the only time in your life that you’ll have the luxury of focusing on learning the fundamentals full time. After that, it’s a lot slower and has to be fit into the gaps.

There has to be a balance of practical skills and theory in a useful degree, and most CS curricula are built that way. It should not be all about random hot tech because that always changes. You can easily learn tech from tutorials, because the tech is simple compared to theory. Theory is also important to be able to judge the merits of different technology and software designs.

Why is this necessarily true?

A CS degree is there to teach you concepts and fundamentals that are the foundation of everything computing related. It doesn't generally chase after the latest fads.

On the junior developer question:

A humble way for devs to look at this, is that in the new LLM era we are all juniors now.

A new entrant with a good attitude, curiosity and interest in learning the traditional "meta" of coding (version control, specs, testing etc) and a cutting-edge, first-rate grasp of using LLMs to assist their craft (as recommended in the article) will likely be more useful in a couple of years than a "senior" dragging their heels or dismissing LLMs as hype.

We aren't in coding Kansas anymore, junior and senior will not be so easily mapped to legacy development roles.

I have been telling people that, titles aside, senior developers were the people not afraid to write original code. I don’t see LLMs changing this. I only envision people wishing LLMs would change this.

I disagree.

1) Senior developers are more likely to know how to approach a variety of tasks, including complex ones, in ways that work, and are more likely to (maybe almost subconsciously) stick to these proven design patterns rather than reinvent the wheel in some novel way. Even if the task itself is somewhat novel, they will break it down in familar ways into familar subtasks/patterns. For sure if a task does require some thinking outside the box, or a novel approach, then the senior developer might have better intuition on what to consider.

The major caveat to this is that I'm an old school developer, who started professionally in the early 80's, a time when you basically had to invent everything from scratch, so certainly there is no mental block to having to do so, and I'm aware there is at least a generation of developers that grew up with stack overflow and have much more of a mindset of building stuff using cut an paste, and less having to sit down and write much complex/novel code themselves.

2) I think the real distinction of senior vs junior programmers, that will carry over into the AI era, is that senior developers have had enough experience, at increasing levels of complexity, that they know how to architect and work on large complex projects where a more junior developer will flounder. In the AI coding world, at least for time being, until something closer to AGI is achieved (could be 10-20 years away), you still need to be able to plan and architect the project if you want to achieve a result where the outcome isn't just some random "I let the AI choose everything" experiment.

I completely agree with your second point. For your first point my experience tells me the people least afraid to write original code are the people least oppositional to reinventing wheels.

The distinguishing behavior is not about the quantity of effort involved but the total cost after consideration of dependency management, maintenance time, and execution time. The people that reinvent wheels do so because they want to learn and they also want to do less work on the same effort in the future.

I almost think what a lot of people are coming to grips is with is how much code is unoriginal. The ones who've adjusted the fastest were humble to begin with. I don't want to claim the title, but I can certainly claim the imposter syndrome! If anything, LLMs validated something I always suspected. The amount of truly unique, relevant to success, code in a given project is often very small. More often than not, it's not grouped together either. Most of the time it's tailored to a given functionality. For example, a perfectly accurate Haversine distance is slower than an optimized one with tradeoffs. LLMs have not yet become adept at housing the ability to identify the need for those tradeoffs in context well or consistently, so you end up with generic code that works but not great. Can the LLM adjust if you explicitly instruct it to? Sure, sometimes! Sometimes it catches it in a thought loop too. Other times you have to roll up your sleeves and do the work like you said, which often still involves traditional research or thinking.

The points mentioned in the article, regarding the things to focus on, is spot on.

[deleted]

> Junior developers: Make yourself AI-proficient and versatile. Demonstrate that one junior plus AI can match a small team’s output. Use AI coding agents (Cursor/Antigravity/Claude Code/Gemini CLI) to build bigger features, but understand and explain every line if not most. Focus on skills AI can’t easily replace: communication, problem decomposition, domain knowledge. Look at adjacent roles (QA, DevRel, data analytics) as entry points. Build a portfolio, especially projects integrating AI APIs. Consider apprenticeships, internships, contracting, or open source. Don’t be “just another new grad who needs training”; be an immediately useful engineer who learns quickly.

If I were starting out today, this is basically the only advice I would listen to. There will indeed be a vacuum in the next few years because of the drastic drop in junior hiring today.

The outlook on CS credentials is wrong. You'll never be worse off than someone without those credentials, all other things equal. Buried in this text is some assumption that the relatively studious people who get degrees are going to fall behind the non-degreed, because the ones who didn't go to school will out-study them. What is really going to happen generally is that the non-degreed will continue to not study, and they will lean on AI to avoid studying even the few things that they might have otherwise needed to study to squeak by in industry.