Yep. This was the biggest thing that turned me off Go. I ported the same little program (some text based operational transform code) to a bunch of languages - JS (+ typescript), C, rust, Go, python, etc. Then compared the experience. How were they to use? How long did the programs end up being? How fast did they run?

I did C and typescript first. At the time, my C implementation ran about 20x faster than typescript. But the typescript code was only 2/3rds as many lines and much easier to code up. (JS & TS have gotten much faster since then thanks to improvements in V8).

Rust was the best of all worlds - the code was small, simple and easy to code up like typescript. And it ran just as fast as C. Go was the worst - it was annoying to program (due to a lack of enums). It was horribly verbose. And it still ran slower than rust and C at runtime.

I understand why Go exists. But I can't think of any reason I'd ever use it.

Rust gets harder with codebase size, because of borrow checker. Not to mention most of the communication libraries decided to be async only, which adds another layer of complexity.

I strongly disagree with this take. The borrow checker, and rust in general, keeps reasoning extremely local. It's one of the languages where I've found that difficulty grows the least with codebase size, not the most.

The borrow checker does make some tasks more complex, without a doubt, because it makes it difficult to express something that might be natural in other languages (things including self referential data structures, for instance). But the extra complexity is generally well scoped to one small component that runs into a constraint, not to the project at large. You work around the constraint locally, and you end up with a public (to the component) API which is as well defined and as clean (and often better defined and cleaner because rust forces you to do so).

Disagree, having dealt with +40k LoC rust projects, bottow checker is not an issue.

Async is an irritation but not the end of the world ... You can write non asynchronous code I have done it ... Honestly I am coming around on async after years of not liking it... I wish we didn't have function colouring but yeah ... Here we are....

We all know that lines of code is a poor measure of project size, but that said, 40k sloc is not a lot

This hasn't been my experience at all.

I still regularly use typescript. One problem I run into from time to time is "spooky action at a distance". For example, its quite common to create some object and store references to it in multiple places. After all, the object won't be changed and its often more efficient this way. But later, a design change results in me casually mutating that object, forgetting that its being shared between multiple components. Oops! Now the other part of my code has become invalid in some way. Bugs like this are very annoying to track down.

Its more or less impossible to make this mistake in rust because of how mutability is enforced. The mutability rules are sometimes annoying in the small, but in the large they tend to make your code much easier to reason about.

C has multiple problems like this. I've worked in plenty of codebases which had obscure race conditions due to how we were using threading. Safe rust makes most of these bugs impossible to write in the first place. But the other thing I - and others - run into all the time in C is code that isn't clear about ownership and lifetimes. If your API gives me a reference to some object, how long is that pointer valid for? Even if I now own the object and I'm responsible for freeing it, its common in C for the object to contain pointers to some other data. So my pointer might be invalid if I hold onto it too long. How long is too long? Its almost never properly specified in the documentation. In C, hell is other people's code.

Rust usually avoids all of these problems. If I call a function which returns an object of type T, I can safely assume the object lasts forever. It cannot be mutated by any other code (since its mine). And I'm not going to break anything else if I mutate the object myself. These are really nice properties to have when programming at scale.

I wholeheartedly concur based on my experience with Rust (and other languages) over the last ~7 or so years.

> If I call a function which returns an object of type T, I can safely assume the object lasts forever. It cannot be mutated by any other code (since its mine). And I'm not going to break anything else if I mutate the object myself. These are really nice properties to have when programming at scale.

I rarely see this mentioned in the way that you did, and I'll try to paraphrase it in my own way: Rust restricts what you can do as a programmer. One can say it is "less powerful" than C. In exchange for giving up some power, it gives you more information: who owns an object, what other callers can do with that object, the lifetime of that object in relation to other objects. And critically, in safe Rust, these are _guarantees_, which is the essence of real abstraction.

In large and/or complicated codebases, this kind of information is critical in languages without garbage garbage collection, but even when I program in languages with garbage collection, I find myself wanting this information. Who is seeing this object? What do they know about this object, and when? What can they do with it? How is this ownership flowing through the system?

Most languages have little/no language-level notion of these concepts. Most languages only enforce that types line up nominally (or implement some name-identified interface), or the visibility of identifiers (public/private, i.e. "information hiding" in OO parlance). I feel like Rust is one of the first languages on this path of providing real program dataflow information. I'm confident there will be future languages that will further explore providing the programmer with this kind of information, or at least making it possible to answer these kinds of questions easier.

> I rarely see this mentioned in the way that you did, and I'll try to paraphrase it in my own way: Rust restricts what you can do as a programmer. One can say it is "less powerful" than C. In exchange for giving up some power, it gives you more information

Your paraphrasing reminds me a bit of structured vs. unstructured programming (i.e., unrestricted goto). Like to what you said, structured programming is "less powerful" than unrestricted goto, but in return, it's much easier to follow and reason about a program's control flow.

At the risk of simplifying things too much, I think some other things you said make for an interesting way to sum this up - Rust does for "ownership flow"/"dataflow" what structured programming did for control flow.

async seems sensible for anything subject to internet latency.

[dead]