Yes, but most mathematicians do not seem to make this distinction between sturdy and flimsy truths. Which puzzles me. Are they unaware? If so, would they care if educated? Or do they fully commit to classical logic and the axiom of choice if pushed? I can see it go either way, depending on the psychology of the individual mathematician.

I don't think they usually make the distinction in a formal sense, but I think most are aware. The space of explorable mathematics is vastly larger than what the community of mathematicians is capable of collectively thinking about, so a lot of aesthetic judgment goes into deciding what is and what isn't interesting to work on. Mathematicians differ in their tastes too. A sense of sturdiness vs flimsiness is something that might inform this aesthetic judgment, but isn't really something most mathematicians would make part of the mathematics. Often, ones interest isn't the result itself, but some proof technique that brings some sense of insight and understanding, and exploring that often doesn't make much contact with foundational matters.

No one not working on foundations has any problem with axiom of choice. It has weird implications but so what? Banach Tarski just means physical shapes aren't arbitrarily subdividable.

Banach Tarski is not about physical shapes.

The thing is, the foundations negating axiom of choice are just as consistent as those with. So, how do mathematicians justify their faith in AC?

My 2 cents is they do justify it by the interest of the consequences, as Tychonoff or Nullstellensatz. I wouldn't call that faith: Best practices is to state Tychonoff as "AC implies Tychonoff" and that last is logically valid. Sometimes the "AC implies..." is missing, buried in the proof or used unawaredly or predates ZFC, and is a bad thing. But very ofen one now see asterisks on theorems needing it.

AC makes things much easier as it allows to play God powers. Negating AC is not significantly different from constructing mathematics that avoids AC (no assumption about validity of AC). And that makes things way harder with longer proofs and only in sub-cases of classical theorems.

Simply assuming the negation of AC is boring, as negations often are. But there are stronger statements, implying the negation of AC which might be as useful. I think for instance one could assume all subsets of the plane to be measurable. Seems convenient to me.

Same with law of the excluded middle. Tossing it out we can assume all functions are computable and all total functions in the real are continuous. Seems nice and convenient too!