> You aren't forced into using async/await everywhere all the time. this sounds like 'a misuse of the interface, a lesson in interface design', etc

Exactly, async-await does not allow you to create correct interfaces. You cannot write code that partially loads and then has sync access, without silly error raises sprinkled all over the place when you're 100% sure there's no way the error will raise or when you want to write code that is 100% correct and will access the part of the state when it is available.

Your example is obvious code pollution. For "correctness" sake I need to handle your raise even though it should not ever happen, or at least the null, to satisfy a type checker.

> So they don't 'eliminate pollution', they just pollute everything by default all the time (???)

That's not the case at all. They just push you immediately in direction where you'll land when you stop using async-await to enforce correctness and performance. edit: you stop modelling control flow and start thinking of your data dependency/computation graph where it's very easy and correct to just change computation/loads to batch mode. `is_something_true` example is immediately reframed to be correct all of the time (as a `file_exists` is now a signal and will fire on true and false)

> You can't criticise async/await, which is explicitly a way to express concurrency, if you don't even care to answer the question - you're just complaining about a solution that solves a problem that you clearly don't have (if you don't need to express concurrency, then you don't need async/await, correct!)

I'm critical of async-await, I'm not comparing it to something else, I can do that but I don't think it is necessary. I've pointed to FRP as a complete solution to the problem, where you're forced to deal with the dataflow from the start, for correctness sake, and can immediately batch, for pipelining/performance sake.

IMO, just like file_exists is a gimmick, or read_bytes(buffer), or write_bytes(buffer) is a leaky abstraction where now your program is required to manage unnecessary wasteful buffers, async-await pushes you into completely useless coding rituals, and your throw is a great example. The way you achieved middleground is with code pollution, because either full async load at the beginning is not performing well, or async-await interleaved with computation pollutes everything to be async and makes timeline difficult to reason about.

This late in the game, any concurrency solution should avoid pointless rituals.