It actually skips the 8 in its repeating decimal. It’s better to think of 1/9^2 as the infinite sum of k * 10^-k for all positive integers k. The 8 gets skipped because you have something like ...789(10)(11)... where the 1 from the “10” and “11” digits carry over, increment the 9 digit causing another carry, so the 8 becomes a 9.