Even then you have other physical issues to consider. This is one of the things I love about the Space Shuttle. It had 5 computers for redundancy during launch and return. You obviously don't want to put them all in the same place so you spread them out among the avionics bays. You also obviously don't want them all installed in the same orientation so you install them differently with respect to the vehicles orientation. You also have a huge data network that requires redundancy and you take all the same steps with the multiplexers as well.

The best example on the Shuttle were the engine control computers. Each engine had two controllers, primary and backup, each with its own set of sensors in the engine itself and each consisting of a lock-step pair of processors. For each engine, the primary controller would use processors built by one supplier, while the backup would use processors of the same architecture but produced by an entirely different supplier (Motorola and TRW).

Today, even fairly standard automotive ECUs use dual-processor lock-step systems; a lot the the Cortex-R microcontrollers on the market are designed around enabling dual-core lock-step use, with error/difference checking on all of the busses and memory.

But what do you do when the primary and backup disagree?

This question is posed in Segal’s Law:

A man with a watch knows what time it is. A man with two watches is never sure.

https://en.wikipedia.org/wiki/Segal%27s_law

Requiring specialized hardware seems overly strict now that we can handle such things at a higher level via something like the fault tolerant lambda calculus.