Aircraft that are designed as gliders are much lighter and thus have much longer glide range than aircraft that aren't. They're so lightweight that they can climb on thermals. A 737 is not going to be able to do that, but a regular glider can't fly at 400 knots.
> thus have much longer glide range
Im gonna be a little pedantic, but the weight has surprisingly small effect on glide range, actually none of the weight affect the range directly, its all from secondary effects.
The glide is given mainly by drag and lift (so body and wing geometry), correlated to certain speed. The weight isnt in the equation at all. What weight does, is increases the speed in which the aircraft achieves this maximum glide ratio, and in higher speed you have higher drag, which finally reduces the range.
Thats why many modern gliders have water tanks in wings, to increase the weight of the glider, moving planes speed of best glide ratio higher, allowing for more efficiency at higher speeds. Its worth it if the atmospheric condition provide strong lifts. Pilot can then dump the water in flight to reduce the wing load, allowing them to land with less speed, or just keep in the air longer as thermals get weaker in the afternoon/evening
(source, I used to be a glider pilot)
It should also be noted that gliders have crazy aspect ratios. Airliner wings are designed for completely different flight envelopes than gliders, it’s all a game of what you optimize for and what trade offs you are willing and/or required to make.
But of course that doesn’t mean that airliners can’t glide well, the Gimly Glider and Air Transat flight come to mind. But gliders can definitely beat an airliner in terms of performance.
You are, of course, correct, and thanks for clarifying.