It all depends on the lens one chooses to view them. None of them are really "functional programming" in the truly modern sense, even F#. As more and more mainstream languages get pattern matching and algebraic data types (such as Python), feature lambdas and immutable values, then these languages converge. However, you don't really get the promises of functional programming such as guaranteed correct composition and easier reasoning/analysis, for that one needs at least purity and perhaps even totality. That carries the burden of proof, which means things get harder and perhaps too hard for some (e.g. the parent poster).
If purity is a requirement for "real" functional programming, then OCaml or Clojure aren't functional. Regarding totality, even Haskell has partial functions and exceptions.
Both OCaml and Clojure are principled and well designed languages, but they are mostly evolutions of Lisp and ML from the 70s. That's not where functional programming is today. Both encourage a functional style, which is good. And maybe that's your definition of a "functional language". But I think that definition will get increasingly less useful over time.
What is an example of a real functional language for you?
Haskell. But there are other examples of "pure functional programming". And the state of the art is dependently typed languages, which are essentially theorem provers but can be used to extract working code.
Like LEAN4 ?
I, too, am curious and keep checking back for a reply!