I don't know how this would be perceived in the US, but in UK/Europe this wouldn't be seen as or regulated as a "consumer level gadget".
It's a main-voltage electrical system. I'm not even sure it would be legal for an electrician without the appropriate qualifications to commercially commission one of these systems. Their website even says installations should be performed by "a licensed electrician or a qualified professional."
In practice, every single solar system I've seen is exactly the same as this one.
A fuse wouldn't help here because they're current protection devices but we're talking about voltages here. Voltages are harder to generically protect against with a sacrificial device, and also over-voltage protection devices themselves have a habit of catching fire even when the voltage is within limits so you probably don't want one right next to your lithium batteries anyway. You'll even find most consumer devices don't have much in the way of continuous overvoltage protection.
It's typical when commissioning solar to just "protect" from panel overvoltage by ensuring your panel outputs are well within the margin of your MPPT (this device appears to be an a combined MPPT, inverter and battery) on a worst case cold day. Really there's just no reason to run your panels right up against the MPPT max voltage.
Given how easy it is to protect against design overvoltage by designing your panel circuits suitably, and how overvoltage protection devices are themselves a point of (potentially catastrophic) failure, I think it's pretty hard to make the case for including one as standard, which is why nobody does.
But leaving this particular issue aside, these devices are totally not suitable for consumer installations unless you like fires.