> A test is not a proof
Actually, a test _is_ a proof! Or more specifically, a traditional test case is a narrow, specific proposition. For example, the test `length([1, 2, 3]) = 3` is a proposition about the behavior of the `length` function on a concrete input value. The proof of this proposition is _automatically generated_ by the runtime, i.e., the proof that this proposition holds is the execution of the left-hand side of the equality and observing it is identical to the right-hand side. In this sense, the runtime serves as an automated theorem prover (and is, perhaps, why test cases are the most accessible form of formal reasoning available to a programmer).
What we colloquially consider "proof" are really more abstract propositions (e.g., using first-order logic) that require reasoning beyond simple program execution. While the difference is, in some sense, academic, it is important to observe that testing and proving (in that colloquial sense) are, at their core, the same endeavor.
That is stretching the definitions of proofs.
QED