Hey, thanks for digging into the details here! Copying a relevant comment (https://news.ycombinator.com/item?id=44523638) from the other thread on the paper, in case it's help on this point.
1. Some prior studies that find speedup do so with developers that have similar (or less!) experience with the tools they use. In other words, the "steep learning curve" theory doesn't differentially explain our results vs. other results.
2. Prior to the study, 90+% of developers had reasonable experience prompting LLMs. Before we found slowdown, this was the only concern that most external reviewers had about experience was about prompting -- as prompting was considered the primary skill. In general, the standard wisdom was/is Cursor is very easy to pick up if you're used to VSCode, which most developers used prior to the study.
3. Imagine all these developers had a TON of AI experience. One thing this might do is make them worse programmers when not using AI (relatable, at least for me), which in turn would raise the speedup we find (but not because AI was better, but just because with AI is much worse). In other words, we're sorta in between a rock and a hard place here -- it's just plain hard to figure out what the right baseline should be!
4. We shared information on developer prior experience with expert forecasters. Even with this information, forecasters were still dramatically over-optimistic about speedup.
5. As you say, it's totally possible that there is a long-tail of skills to using these tools -- things you only pick up and realize after hundreds of hours of usage. Our study doesn't really speak to this. I'd be excited for future literature to explore this more.
In general, these results being surprising makes it easy to read the paper, find one factor that resonates, and conclude "ah, this one factor probably just explains slowdown." My guess: there is no one factor -- there's a bunch of factors that contribute to this result -- at least 5 seem likely, and at least 9 we can't rule out (see the factors table on page 11).
I'll also note that one really important takeaway -- that developer self-reports after using AI are overoptimistic to the point of being on the wrong side of speedup/slowdown -- isn't a function of which tool they use. The need for robust, on-the-ground measurements to accurately judge productivity gains is a key takeaway here for me!
(You can see a lot more detail in section C.2.7 of the paper ("Below-average use of AI tools") -- where we explore the points here in more detail.)
1. That does not support these results in any way 2. Having experience prompting is quite a little part of being able to use agentic IDE tools. It's like relating cutting onion to being a good cook
I think we should all focus on how the effectivity is going to change in the long-term. We all know AI tooling is not going to disappear but to become better and better. I wouldn't be afraid to lose some productivity for months if I would acquire new skills for the future.