Return on energy is different from cost, and it's strange that you're ignoring that. When you look at the levelized cost of energy, solar and onshore wind win: On a per-kWh basis, they produce the cheapest energy around. Gas combined cycle plants are close, but they have pollution and CO2 drawbacks.

LCOE doesn't capture everything you want, but when your grid mix is low on solar, it's the most relevant metric. When we get 15x return on energy and the energy we produce is cheap, you can ... use 1/15th of that energy to make more solar panels. And we're getting better at producing them by the year: Energy input is down and efficiency is up.

Nuclear is about 3x as expensive per kWh generated and it's not as dispatchable. Fossil fuels have this annoying problem of emitting co2and contributing a lot to climate change. That doesn't mean we shouldn't keep trying to find ways to drive the cost of nuclear down - we should! - but from the perspective of "What generation should I install tomorrow?", solar and wind, augmented with a bit of storage, are really impressive: They're the fastest to bring online and provide the cheapest energy. The cost to them is you probably have to pay your gas plant operators a higher capacity fee for rare occasions, but that's ok. In a region like mine (PJM - pennsylvania, new jersey, virginia, ohio, etc.), they still make a profit while burning less gas, and consumer energy cost drops.

It seems weird to get all religious about technology choices when they each have advantages and disadvantages and combine pretty well to even out those differences. It would be expensive to be 100% solar+wind+storage because of the overprovisioning needed. But a mix instead of running 100% fossil (or 100% nuclear) would drop your costs considerably and be faster to build out.

From a pure physics and first principles perspective, a higher EROI implies higher scalability and lower costs.

Nuclear today has high costs associated to it due to uncertainty in permitting, high upfront costs due to red-tape, annd archaic regulations that stifle any innovation. These make risk management prohibitively expensive as is the cost of insuring them. If the catastrophic rate of failure and associated deaths are far far smaller than what’s generally accepted in society(think fatalities due to vehicle accidents), then we must work to removing the red-tape to ease construction of these. They’re also far more green to operate.

This way, we can keep solar for residential, and for industries to offset their own use(think data centers investing in their own energy supply instead of paying others. Think on-premise vs off-premise).

Let's start with privatizing the risk of it going kaboom. Why do we need red tape that pushes the cleanup costs onto taxpayer shoulders? It's so safe!

Sophisticated private insurers being willing to shoulder the full financial downside of nuclear power plants going fukushima (not < 1% as it is now!) will give everybody confidence that they're not just pushing propaganda exaggerating how safe they are to an unsophisticated public.

Assuming you are correct, there will be less red tape, the sophisticated insurers will happily take on the additional risks and unsophisticated taxpayers dont have to worry about being on the hook for one of those ~$800 billion Fukushima style cleanup events.

I wont hold my breath though.... after all, they know the nuclear industry would stop existing if insurance were actually priced according to the risk even if the consumers of their expensive public relations campaigns dont.