I'm not sure the graph offers any clear advantage in the demonstrated use case.

It's overhead in coding.

The source is the doc. Raw text is as much of a fact as an abstracted data structure derived from that text (which is done by an external LLM - provenance seems to break here btw, what other context is used to support that transcription, why is it more reliable than a doc within the actual codebase?).

Hey - i agree that the demonstrated use can be solved with simple plan.md file in the codebase itself.

With use-case we wanted to showcase the shareable aspect of CORE more. The main problem statement we wanted to address was "take your memory to every AI" and not repeating yourself again and again anymore.

The relational graph based aspect of CORE architecture is an overkill for simple fact recalling. But if you want an intelligent memory layer about you that can answer What, When, Why and also is accessible in all the major AI tools that you use, then CORE would make more sense.