Yeah, I agree. "Independence" is fundamentally a property of the formal system you're working within (or really, it's a property of the system you're using and of the axiomatic system under test, the system a proposition would be independent from). I'm holding out a bit to unify that with "undecidability" because undecidability takes on a particular character in constructive systems that happens to align with Turing's notion.

So at some level, this was just an acknowledgement that "undecidability" in this form is well represented in formal logic. In that sense, at least in constructive logics, it's not just a synonym for "independence".