Kafka also doesn't give you all those things. E.g. there is no automatic dead-lettering, so a consumer that throws an exception will endlessly retry and block all progress on that partition. Kafka only stores bytes, so schema is up to you. Exactly-once is good, but there are some caveats (you have to use kafka transactions, which are significantly different than normal operation, and any external system may observe at-least-once semantics instead). Similar exactly-once semantics would also be trivial in an RDBMS (i.e. produce and consume in same transaction).

If you plan on retaining your topics indefinitely, schema evolution can become painful since you can't update existing records. Changing the number of partitions in a topic is also painful, and choosing the number initially is a difficult choice. You might want to build your own infrastructure for rewriting a topic and directing new writes to the new topic without duplication.

Kafka isn't really a replacement for a database or anything high-level like a ledger. It's really a replicated log, which is a low-level primitive that will take significant work to build into something else.

I want to rewrite some of my setup, we're doing IoT, and I was planning on

MQTT -> Redpanda (for message logs and replay, etc) -> Postgres/Timescaledb (for data) + S3 (for archive)

(and possibly Flink/RisingWave/Arroyo somewhere in order to do some alerting/incrementally updated materialized views/ etc)

this seems "simple enough" (but I don't have any experience with Redpanda) but is indeed one more moving part compared to MQTT -> Postgres (as a queue) -> Postgres/Timescaledb + S3

Questions:

1. my "fear" would be that if I use the same Postgres for the queue and for my business database, the "message ingestion" part could block the "business" part sometimes (locks, etc)? Also perhaps when I want to update the schema of my database and not "stop" the inflow of messages, not sure if this would be easy?

2. also that since it would write messages in the queue and then delete them, there would be a lot of GC/Vacuuming to do, compared to my business database which is mostly append-only?

3. and if I split the "Postgres queue" from "Postgres database" as two different processes, of course I have "one less tech to learn", but I still have to get used to pgmq, integrate it, etc, is that really much easier than adding Redpanda?

4. I guess most Postgres queues are also "simple" and don't provide "fanout" for multiple things (eg I want to take one of my IoT message, clean it up, store it in my timescaledb, and also archive it to S3, and also run an alert detector on it, etc)

What would be the recommendation?

Very interesting.

I need a durable queue but not indefinitely. Max a couple of hours.

What I want is Google PubSub but open source so I can self host.

Small size, Beanstalkd (https://beanstalkd.github.io/) can get you pretty far.

Larger, RabbitMQ can handle some pretty good workloads.